Логические ошибки

Логические ошибки – это то, что встречается у каждого из нас. В данной статье мы рассмотрим примеры логических ошибок, которые, так или иначе, встречаются в нашей повседневной жизни.

Основы логики мы рассматривали отдельно. Настоятельно рекомендуем ознакомиться с ними и узнать 4 главных закона логики. Также обратите внимание на когнитивные искажения, или распространенные ошибки мышления. Очень интересно!

Но сейчас мы будем говорить только о логических ошибках.

Подмена тезиса – это логическая ошибка в доказательстве, состоящая в том, что начав доказывать некоторый тезис, постепенно в ходе доказательства переходят к доказательству другого положения, сходного с тезисом, но имеющего совершенно иное значение.

Другая популярная логическая ошибка – «предвосхищение основания». Она заключается в том, что в качестве аргументов используются недоказанные, как правило, произвольно взятые положения: ссылаются на слухи, на ходячие мнения, высказанные кем-то предположения или даже на собственный вымысел, выдавая их за аргументы, якобы обосновывающие тезис.

В действительности же доброкачественность таких доводов лишь предвосхищается, но не устанавливается с несомненностью. Обычно подобные лже-аргументы сопровождаются фразами: «Как абсолютно всем известно…», «Кто же будет спорить с тем, что…», «Само собой разумеется, что…», «Каждому известно, что…», дабы рассеять возможные сомнения у простого слушателя.

Что такое Логическая Ошибка

Логическая ошибка – в логике, философии и прочих науках, изучающих познание, ошибка, связанная с нарушением логической правильности умозаключений.

Ошибочность обусловлена каким-либо логическим недочётом в доказательстве, что делает доказательство неверным в целом.

Logicheskie-oshibki

Если человеку, который смотрит на уходящие вдаль рельсы железной дороги, кажется, что они сходятся на горизонте в одной точке, то он ошибается. Ошибается тот, кому кажется, что падение одного зерна на землю не производит ни малейшего шума, что пушинка не имеет веса и т. д.

Можно ли назвать эти ошибки логическими? Нет. Они связаны с обманом зрения, слуха и т. д., это ошибки чувственного восприятия.

Логические же ошибки относятся к мыслям. Причем не к мыслям как таковым, а к тому, как связывается одна мысль с другой, к отношениям между различными мыслями.

Нарушение закона тождества

В нашей повседневной жизни часто приходится наблюдать нарушение одного из главных законов логики – закона тождества. Взять, например, такой разговор.

– Можно мне взять твои книги?

– Возьми.

– А я не хочу их брать.

– Тогда не бери.

– Он запретил мне брать свои книги.

Здесь в выражении «не бери» смешиваются два разных суждения: «не бери» в смысле «можешь не брать» и «не бери» в смысле «нельзя брать», в результате чего нарушается закон тождества и неизбежно возникает недоразумение.

Часто самые незначительные изменения во фразе, например, перенос ударения, могут совершенно изменить ее логический смысл.

Вспомним недоразумение, которое возникло в связи с высказыванием Исаака Ньютона: «Гипотез не сочиняю». Многих удивляло, что Ньютон (см. интересные факты о Ньютоне), несмотря на это заявление, сам выдвигал много гипотез.

В действительности же оснований для удивления нет, и те, кто усматривает здесь противоречие, просто нарушают закон тождества. В приведенном высказывании Ньютона нужно поставить логическое ударение на слове «сочиняю», и тогда оно будет иметь смысл: «Гипотез не сочиняю, но выдвигаю их на основе фактов».

Некоторые истолковали, его иначе и, поставив логическое ударение на слове «гипотез», вложили в это высказывание совсем иной смысл: «Гипотез не выдвигаю, то есть, не создаю их вообще». На основе этого был сделан вывод, что Ньютон – противник всяких гипотез.

Нарушение закона исключенного третьего

Также нередко встречаются логические ошибки, связанные с нарушением закона исключенного третьего. Приведем классический пример.

В одной бане, вывешено объявление следующего содержания:

В камеру хранения принимаются:

  • верхняя одежда,
  • головные уборы,
  • обувь,
  • деньги и ценные вещи.

Не принимаются на хранение:

  • огнестрельное и холодное оружие,
  • горючие вещества,
  • продукты,
  • молотки и ножи.

В баню приходит гражданин, который хочет сдать вместе с одеждой связку книг. Гардеробщица отказывается брать книги, мотивируя тем, что их нет в списке вещей, принимающихся на хранение. Гражданин настаивает, ссылаясь на то, что и в списке предметов, не принимающихся на хранение, книги не указаны.

На основании указанного объявления суждение «книги принимаются» отрицается так же, как и суждение «книги не принимаются».

Логические ошибки мышления

В рассмотренных примерах противоречие возникает между двумя разными суждениями. Но законы мышления могут быть нарушены и внутри одного суждения.

Это бывает в тех случаях, когда из одного суждения вытекает другое, ему противоречащее. Например, древнегреческие софисты выдвинули утверждение «истинных суждений не существует».

Sofisty.-Logicheskie-oshibki

Это утверждение опроверг Аристотель следующим образом.

Утверждение «истинных суждений не существует» является суждением. Если все суждения неистинны, то неистинно также и это суждение, то есть неистинно, что истинных суждений нет. А это значит, что истинные суждения существуют.

Такого же рода внутренне противоречивое суждение высказывает Пигасов в романе Тургенева «Рудин».

– Прекрасно! – промолвил Рудин, – стало быть, по-вашему, убеждений нет?

– Нет – и не существует.

– Это ваше убеждение?

– Да.

– Как же вы говорите, что их нет? Вот вам уже одно на первый случай.

Логика Галилея

В истории науки были случаи, когда казавшиеся безусловно истинными суждения опровергались впоследствии путем обнаружения их внутренней логической несостоятельности.

Так, по вопросу о падении тел в физике в свое время считалась общепризнанной точка зрения, согласно которой скорость падающих тел тем больше, чем больше вес тела. Эту точку зрения опроверг Галилео Галилей, найдя в ней логическую ошибку. Сделал он это при помощи следующего рассуждения.

Пусть большой камень падает с какой-то определенной скоростью. Тогда другой камень, поменьше, будет падать с меньшей скоростью.

Теперь предположим, что мы сложили эти камни. С какой скоростью будет падать новый камень, вес которого равен весу двух первых?

  1. С одной стороны, эта скорость должна быть меньше скорости первого камня, поскольку мы присоединили к нему камень, падающий с меньшей скоростью, и этим самым уменьшили скорость падения первого камня.
  2. С другой стороны, вес камня, получившегося от сложения двух камней, больше веса каждого из них, поэтому и скорость его падения должна быть больше скорости каждого отдельного камня.
  3. Получается противоречие: скорость двойного камня одновременно и меньше и больше скоростей каждого из двух первых камней, что противоречит закону исключенного третьего.

Чтобы устранить это противоречие, говорит Галилей, нужно сделать допущение, что все тела падают с одинаковым ускорением.

Таким образом, по неправильности суждений можно судить об их неистинности. Если два или более утверждения противоречат друг другу, то это значит, что в них заключена какая-то ложь.

К слову сказать, это обстоятельство используется на суде для уличения преступника. Запутавшись в противоречивых показаниях, преступник бывает вынужден сознаться в своем преступлении.

Софизмы

Если законы логики нарушаются умышленно, то мы имеем дело с софизмами (от греч. sophisma – «измышление, хитрость»), которые представляют собой внешне правильные доказательства ложных мыслей.

Приведем несколько популярных софизмов.

Разные числа

Числа 3 и 4 – это два разных числа, 3 и 4 – это 7, следовательно, 7 – это два разных числа.

В данном внешне правильном и убедительном рассуждении смешиваются или отождествляются различные, нетождественные вещи: простое перечисление чисел (первая часть рассуждения) и математическая операция сложения (вторая часть рассуждения); между первым и вторым нельзя поставить знак равенства, т. е. налицо нарушение закона тождества.

Женщина – не человек

Или вот еще один пример софизма, где ловко прячется простая логическая ошибка.

Любой мужчина – человек. Женщина не мужчина. Следовательно, женщина – не человек.

Знаешь то, чего не знаешь

– Знаешь ли ты, о чём я хочу тебя спросить?

– Нет.

– Знаешь ли ты, что добродетель есть добро?

– Знаю.

– Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь.

Лекарство

Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше.

Вор

Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего.

Как разоблачать софизмы

Для разоблачения софизма необходимо найти в рассуждении два объекта, которые умышленно и незаметно отождествляются.

При этом стоит заметить, что сделать это далеко не всегда просто. Именно поэтому так важно развивать логическое мышление.

Паралогизмы

От софизмов следует отличать паралогизмы (от греч. paralogismus – «неправильное рассуждение») – логические ошибки, допускаемые непроизвольно, в силу незнания, невнимательности или иных причин. Рассмотрим несколько примеров.

  1. Один человек пожилого возраста доказывает, что сила его, несмотря на преклонные годы, ничуть не уменьшилась:

– В юности и молодости я не мог поднять штангу весом 200 кг. Сейчас я тоже не могу ее поднять, стало быть, сила моя осталась прежней.

  1. В одной китайской семье родилась девочка. Когда ей исполнился год, к ее родителям пришел сосед и стал сватать девочку за своего двухлетнего сына. Отец сказал:

– Моей девочке всего год, а твоему мальчику целых два, т. е. он в два раза старше ее, значит, когда моей дочери будет 20 лет, твоему сыну будет уже 40. Зачем же мне выдавать свою дочь за старого жениха?!

Эти слова услышала жена и возразила:

– Сейчас нашей дочке год, а мальчику два, однако через год ей будет тоже два и они станут ровесниками, так что вполне можно в будущем выдать нашу девочку за соседского мальчика.

  1. Маленький мальчик спрашивает:

– Мама, что от нас дальше – Луна или Африка?

– Конечно же Африка, ведь Луну отсюда видно, а Африку – нет!

Логические парадоксы

Также от софизмов следует отличать логические парадоксы (греч. paradoxes – «неожиданный, странный»).

Парадокс в широком смысле слова – это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом.

Primery-logicheskih-oshibok

Логический парадокс – это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают.

Если софизм – это всегда какая-либо уловка, преднамеренная логическая ошибка, которую можно обнаружить, разоблачить и устранить, то парадокс представляет собой неразрешимую ситуацию.

Это своего рода мыслительный тупик, «камень преткновения» в логике: за всю ее историю было предложено множество разнообразных способов преодоления и устранения парадоксов, однако ни один из них до сих пор не является исчерпывающим.

Парадокс лжеца

Наиболее известный логический парадокс – это парадокс «лжеца». Часто его называют «королем логических парадоксов». Он был открыт еще в Древней Греции.

По преданию, философ Диодор Кронос дал обет не есть до тех пор, пока не разрешит этот парадокс. В конечном счете, он умер от голода, так и не сумев решить эту логическую головоломку. Другой мыслитель – Филет Косский впал в отчаяние от невозможности найти решение парадокса «лжеца» и покончил с собой, бросившись со скалы в море.

Существует несколько формулировок парадокса лжеца. Наиболее коротко и просто он формулируется в ситуации, когда человек произносит простую фразу: Я лжец.

Анализ этого элементарного и бесхитростного на первый взгляд высказывания приводит к ошеломляющему результату. Как известно, любое высказывание (в том числе и вышеприведенное) может быть или истинным или ложным.

Рассмотрим последовательно оба случая, в первом из которых это высказывание является истинным, а во втором – ложным.

  • Допустим, что фраза «Я лжец» истинна, т. е. человек, который произнес ее, сказал правду. Но в этом случае он действительно лжец, следовательно, произнеся данную фразу, он солгал.
  • Теперь предположим, что фраза «Я лжец» ложна, т. е. человек, который произнес ее, солгал, но в этом случае он не лжец, а правдолюб. Следовательно, произнеся данную фразу, он сказал правду.

Получается нечто удивительное и даже невозможное: если человек сказал правду, то он солгал; а если он солгал, то он сказал правду. Два противоречащих суждения не только одновременно истинны, но и вытекают друг из друга.

Парадокс деревенского парикмахера

Другой известный логический парадокс, обнаруженный в начале 20 века английским философом, логиком и математиком Бертраном Расселом, – это парадокс «деревенского парикмахера».

Представим себе, что в некой деревне есть только один парикмахер, бреющий тех ее жителей, которые не бреются сами. Анализ этой незамысловатой ситуации приводит к необыкновенному выводу.

Зададимся вопросом: может ли деревенский парикмахер брить самого себя? Рассмотрим оба варианта, в первом из которых он сам себя бреет, а во втором – не бреет.

  • Допустим, что деревенский парикмахер сам себя бреет, но тогда он относится к тем жителям деревни, которые бреются сами и которых не бреет парикмахер, следовательно, в этом случае, он сам себя не бреет.
  • Теперь предположим, что деревенский парикмахер сам себя не бреет, но тогда он относится к тем жителям деревни, которые не бреются сами и которых бреет парикмахер, следовательно, в этом случае он сам себя бреет.

Как видим, получается невероятное: если деревенский парикмахер сам себя бреет, то он сам себя не бреет; а если он сам себя не бреет, то он сам себя бреет (два противоречащих суждения являются одновременно истинными и взаимообуславливают друг друга).

Парадоксы «лжеца» и «деревенского парикмахера» вместе с другими подобными им парадоксами также называют антино́миями (греч. antinomia – «противоречие в законе»), т. е. рассуждениями, в которых доказывается, что два высказывания, отрицающие друг друга, вытекают одно из другого.

Считается, что антиномии представляют собой наиболее крайнюю форму парадоксов. Однако довольно часто термины «логический парадокс» и «антиномия» рассматриваются как синонимы.

Протагор и Эватл

Менее удивительную формулировку, но не меньшую известность, чем парадоксы «лжеца» и «деревенского парикмахера», имеет парадокс «Протагор и Эватл», также появившийся в Древней Греции.

В основе этого логического парадокса лежит незатейливая на первый взгляд история, которая заключается в том, что у софиста Протагора был ученик Эватл, бравший у него уроки логики и риторики.

Учитель и ученик договорились, что Эватл заплатит Протагору гонорар за обучение только в том случае, если выиграет свой первый судебный процесс.

Однако по завершении обучения Эватл не стал участвовать ни в одном процессе и денег учителю, разумеется, не платил. Протагор пригрозил ему, что подаст на него в суд и тогда Эватлу в любом случае придется заплатить.

– Тебя или присудят к уплате гонорара, или не присудят, – сказал ему Протагор, – если тебя присудят к уплате, ты должен будешь заплатить по приговору суда; если же тебя не присудят к уплате, то ты, как выигравший свой первый судебный процесс, должен будешь заплатить по нашему уговору.

На это Эватл ему ответил:

– Все правильно: меня или присудят к уплате гонорара, или не присудят; если меня присудят к уплате, то я, как проигравший свой первый судебный процесс, не заплачу по нашему уговору; если же меня не присудят к уплате, то я не заплачу по приговору суда.

Таким образом, вопрос о том, должен Эватл заплатить Протагору гонорар или нет, является неразрешимым.

Договор учителя и ученика, несмотря на его вполне невинный внешний вид, является внутренне, или логически, противоречивым, так как он требует выполнения невозможного действия: Эватл должен и заплатить за обучение, и не заплатить одновременно.

В силу этого сам договор между Протагором и Эватлом, а также вопрос об их тяжбе представляет собой не что иное, как логический парадокс.

Решить этот спор можно было бы лишь в том случае, если бы обе стороны соблюдали закон тождества и в качестве основания для уплаты или неуплаты брали что-нибудь одно: либо решение суда, либо свой договор.

Как избегать логических ошибок

Как же научиться не делать логических ошибок, то есть мыслить правильно, во всех случаях, по каким угодно вопросам, знакомым или впервые встретившимся, о каких угодно предметах, привычных и непривычных?

Повседневная жизненная практика, «здравый смысл», как уже говорилось, во многих случаях помогают избежать логических ошибок, однако отнюдь не гарантируют избавление от них.

Конечно, чем шире практика, чем с большим количеством разнообразных предметов и видов деятельности сталкивается человек, тем больше возможностей он имеет для развития у себя правильного мышления.

Расширение кругозора, углубление фактических знаний, знакомство с самыми различными рассуждениями, несомненно, способствуют развитию мышления вообще.

Широко образованный, развитой человек быстрее заметит логическую ошибку в рассуждении даже и тогда, когда она не касается непосредственно его специальности, его обычных, повседневных занятий.

Поэтому изучение различных наук имеет большое значение, ведь каждая наука так или иначе, в той или иной степени связана с рассуждениями.

Использованная литература:

Авенир Уемов «Логические ошибки»,

Дмитрий Гусев «Удивительная логика».

Что же, теперь, когда вы знакомы с различными примерами логических ошибок, можете пройти тест на логику.

Также обратите внимание на 5 задач на логику, 8 задач на смекалку, известную загадку Толстого про шапку и знаменитый тест Эйнштейна. Всё это поможет вам прокачать свой мозг, существенно снизив количество логических ошибок в будущем.

Если вам понравилась статья про логические ошибки – поделитесь ею в социальных сетях. Если вы знаете интересные примеры логических ошибок – напишите их в комментариях и подписывайтесь на сайт interesnyefakty.org любым удобным способом.

Понравился пост? Нажми любую кнопку:



А что вы думаете об этом?
  • Аноним

    К логической задаче Галилея.
    1. Почему в суждениях речь идет о скорости, а в выводе об ускорении? Это случайная ошибка или чем то обоснованная подмена?
    2. Почему в суждениях о результирующих весе и скорости объединенных камней первое свойство складывается, а второе усредняется (общий вес увеличивается, а общая скорость уменьшается)? Нет ли здесь ошибки построения суждений?

    По второму пункту мне пришло в голову следующее объяснение.
    Здесь подразумеваются, очевидно, еще два суждения, постулирующие именно такой способ связи между субъектами (камнями) и предикатами (вес, скорость).
    Почему объединение увеличивает общий вес, вроде, понятно — это эмпирическое наблюдение за измерением (взвешиванием) возведенное в постулат.
    Откуда взялась идея об усреднении скоростей? Может быть тоже из наблюдения за результирующей скоростью передвижения групп субъектов — на практике скорость таких групп стремится к скорости самого медленного члена группы.

    Хотелось бы получить комментарий автора, как минимум по первому пункту.

    • Аноним

      ого! ви справді роздумували над цим! молодець!

      • Аноним

        Ну, а почему бы и нет? Жаль только, что автор не удосужился ответить.

Top